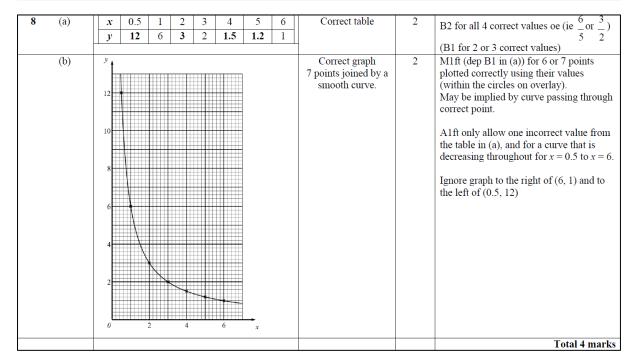
1	(a)		(-4.5) 3 4.5 (3) 1.5 (3) 10.5	2	B2 (B1	for all correct for any two correct) No points in table but correctly plotted on grid, award mark
	(b)	(-3, -4.5) (-2,3) (-1,4.5) (0,3) (1,1.5) (2,3) (3,10.5)	Smooth curve	2	B2 (B1	for a correct smooth curve. Points or curve passing through correct values within half a small square. for at least 5 points plotted correctly; ft from table for plotting only provided B1 awarded in part (a))
	(c)			2	M1	for drawing $y = -x - 1$ with two correct points plotted and intersection with curve. or for stating $y = -x - 1$ or for $\frac{1}{2}x^3 - 2x + 3 = -x - 1$ seen
			-2.3 to -2.4		A1	ft their curve dep on M1 and line $y = -x - 1$ drawn
						Total 6 marks

2 ai				B1	tangent drawn at $P(x=2)$
				M1	(dep on B1) for a method to find gradient e.g. difference in y-values difference in x-values
		-0.6	3	A1	(dep on B1) accept answers in range -0.4 to -0.7 and from correct figures for their line
ai	e.g. $y = -0.6x + c$ or $y = mx + 3.6$ or $2.4 = -0.6 \times 2 + c$			M1	for start of method to find the tangent equation e.g. $y = mx + c$ where m is their gradient or $y = mx + c$ where c is the y -intercept for their tangent or for substituting a point from their tangent e.g. $(2, 2.4)$ into $y = mx + c$ where m is their gradient
		y = -0.6x + 3.6	2	A1	ft their gradient from (i) and intercept of their tangent, so long as intercept / value of c is > 3
b		3		B1	
		-1	2	B1	
					Total 7 marks


3	C, B, E	3	В3	for all 3 correct	
			(B2	for 2 correct)	
			(B1	for 1 correct)	
					Total 3 marks

4 (a)	8.5, 5, 4, 5	2	B2	all 4 correct (allow eg 5.0 for 5)
				(B1 for 2 or 3 correct)
(b)			M1	ft their table dep on B1 scored in (a) for 5 or 6 points plotted correctly (tolerance 1 small square)
	fully correct graph	2	A1	A fully correct graph – correct points plotted correctly (within tolerance of 1 small square) and intention to join with a smooth curve (be generous if intention is clearly a smooth curve through all points)
				NB: If a student has nothing in the table for part (a) but draws a fully correct graph in part (b) award the marks in part (a)
				Total 4 marks

	$\left \frac{dy}{dx} \right = 2 \times kx - 16x^{-2} \text{ or } 2kx - \frac{16}{x^2} \text{ oe}$			
			(M1)	for one term differentiated correctly
,	$2kx - 16x^{-2} = 0$ oe		M1	ft dep on M1
6	eg $\frac{8}{27}k = 8$ or $\frac{4}{3}k = 36$ or $k = 27$ oe		M1	(not ft) for substituting $x = \frac{2}{3}$ into their correct equation for k and getting as far as one step from the value of k or the correct value of k
. 1	Working must be seen	36	A1	dep on M4
				Total 5 marks

6	(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2x + px^{-2} \text{ oe}$		4	M2	Both terms correct
		$\left(\frac{dx}{dx}\right)^{2x+px}$ be				(M1 for one term correct)
		$2(-3) + p(-3)^{-2} (=0)$			M1	(dep on M1) substitute -3 into a derivative of the form $ax + bx^{-2}$
			54		A1	
	(b)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right)2x + 16x^{-2} = 0$		3	Ml	set $\frac{dy}{dx} = 0$, at least one term correct
		eg $2x^3 + 16 = 0$ or $2x^3 = -16$ or $x^3 = -8$ or $x = \sqrt[3]{-8}$ or $x = -2$			M1	rearrangement of the correct equation to remove the negative power of <i>x</i>
			12		A1	
						Total 7 marks

7	C, F, D, H	3	for all 4 correct for 2 or 3 correct) for 1 correct)
			Total 3 marks

9	eg $-6 = 8a + 4b - 24 + 6$ or $8a + 4b = 12$ oe		6	M1	for substituting $x = 2$ and $y = -6$ into the equation for C
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{3} 3ax^{2} + 2bx - 12$ oe			M1	at least 2 terms correct
	eg $16 = 12a + 4b - 12$ or $12a + 4b = 28$ oe			M1ft	(dep on previous M1)
					follow through their $\frac{dy}{dx}$
	a = 4 and $b = -5$			M1	for $a = 4$ and $b = -5$
	eg "4"× 3³ + "-5"× 3² - 12 × 3 + 6			M1ft	correctly substituting their a , their b and $x = 3$ into the equation for C
		33		Al	(dep on M3) allow (3, 33)
					Total 6 marks

(c) 2x		correct			
(c) 2x or		curve	2	the curve – If not B2, the	smooth curve. (there is an overlay for check the line now for (c)) en B1 for at least 5 points plotted from table dep on B1 or B2 in (a)
	$2x^3 - 6x + 4 = -3x$ or $x^3 - 3x + 2 = -\frac{3}{2}x$ or $y = -\frac{3}{2}x$ seen (allow $-\frac{3}{2}x$)		3	И1	
all	$v = -\frac{3}{2}x$ Illow a correct line that intercepts with the curve eg of points on line $(0, 0), (-1, 1.5), -1.5, 2.25, (-2, 3)$				e that intercepts with the curve ne drawn implies M2)
	Inswer dependent on a correct line being Irawn	(x=) -1.6		dep on a co	or -1.7 or ft their curve/line intercept rrect line being drawn ue given as well then M2 only

11 (a)		12 and 4.5	1	B1 allow $\frac{9}{2}$ oe May be awarded if plotted correctly on the graph
(b)		Correct graph	2	M1 ft for at least 5 points plotted correctly (± half square)
	Correct answer scores full marks (unless from obvious incorrect working)			A1 for correct curve between $x = 0.5$ and $x = 5$ (clear intention to go through all the points and which must be curved) Note: If a fully correct graph is shown, but an incomplete table is shown in (a), then award the marks for (a)
				Total 3 marks

12	В	3	B1
	A		B1
	F		B1
			Total 3 marks

13	(a)	D	1	B1 allow d
	(b)	C	1	B1 allow c
	(c)	В	1	B1 allow b
				Total 3 marks

14	С	3	B1	check diagrams
	F		B1	check diagrams
	A		B1	check diagrams
				Total 3 marks